Skip to main content
Research article - Peer-reviewed, 2013

Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)

Rubol, Simonetta; Manzoni, Stefano; Bellin, Alberto; Porporato, Amilcare

Abstract

The emission of greenhouse gasses (GHG) from soils is controlled by biogeochemical reactions and the physical constraints on gas diffusion to the soil surface. Here we present and discuss a mathematical model that couples oxygen and soil water dynamics to biochemical reactions and gas transport to explore the major drivers of trace gas emission at daily time scale in unsaturated soils. The model accounts for trace gas emissions (CO2, and N2O from nitrification and denitrification), as well as for the competition for nitrate by denitrification and dissimilatory reduction of nitrate to ammonium (DNRA). Our results indicate that explicit modeling of oxygen dynamics is important when re-aeration is limited, such as under wet conditions, in particular for fine-textured soils. The balance of labile substrate, oxygen, and water availabilities explain the observed peaks in GHG emissions at moisture values around the soil field capacity. The timing of these peaks during a dry-down is delayed in fine-textured soils, due to the slower drying and limited gas exchange rates. In addition, N2O emissions may be limited by DNRA at high soil moisture. (C) 2013 Elsevier Ltd. All rights reserved.

Keywords

Oxygen dynamics; Nitrate ammonification; Nitrous oxyde emissions; N cycle; Soil texture

Published in

Advances in Water Resources
2013, Volume: 62, pages: 106-124
Publisher: ELSEVIER SCI LTD

    SLU Authors

    UKÄ Subject classification

    Geosciences, Multidisciplinary

    Publication Identifiers

    DOI: https://doi.org/10.1016/j.advwatres.2013.09.016

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/51847