Skip to main content
Research article - Peer-reviewed, 2013

Uncertainty of Blank Correction in Isotope Ratio Measurement

Ohlsson, Anders


Blank correction for isotope ratio measurement on small amounts of substances is often limited by presence of a blank, with an apparent isotopic composition different from that of the sample. For isotope ratios, blank correction is commonly performed either by the regression method, which works without the need for estimation of the blank, or by the subtraction method. With the subtraction method, estimation of the amount and isotope delta of the blank is required, and these estimates could be obtained either by direct, semi-indirect, or indirect measurement. Previously given expressions for the standard uncertainties of indirectly measured blank amounts and blank isotope deltas did not account for covariance between input quantities. In the present work, a previously published data set was re-evaluated, with covariance terms properly included in the calculation of uncertainties. It was shown that covariance effects may yield a significant reduction in uncertainty estimates, both for blank quantities and for blank corrected results. For series measurements on a standard material, it was also shown that the distribution of individual corrected isotope delta values around the average value was approximately normal, with its standard deviation equal to the estimated standard uncertainty of the corrected values. In most cases, it was observed that the regression and subtraction methods yield approximately the same blank corrected average values and uncertainties, regardless of method selected for estimation of blank quantities.

Published in

Analytical Chemistry
2013, volume: 85, number: 11, pages: 5326-5329

Authors' information

Ohlsson, Anders
Swedish University of Agricultural Sciences, Department of Forest Ecology and Management

UKÄ Subject classification

Forest Science

Publication Identifiers


URI (permanent link to this page)