Skip to main content
SLU publication database (SLUpub)

Research article2013Peer reviewed

Modelling phosphorus in Lake Simcoe and its subcatchments: scenario analysis to assess alternative management strategies

Jin, L.; Whitehead, Paul G.; Baulch, Helen M.; Dillon, Peter J.; Butterfield, Dan A.; Oni, Stephen; Futter, Martyn; Crossman, Jill; O'Connor, Eavan M.

Abstract

In Lake Simcoe (Ontario, Canada), anthropogenic phosphorus (P) loads have contributed to increased algal growth, low hypolimnetic dissolved oxygen concentrations, and impaired fish reproduction. Management targets to control eutrophication require an ambitious programme to reduce P loads to the lake. Remediation strategies rely upon an improved understanding of P sources and assessment of the effectiveness of different control options. Here we present an application of the integrated catchment model for phosphorus (INCA-P) to examine P sources across the Lake Simcoe watershed and simulate in-lake P concentrations. This is the first application of INCA-P to a complex watershed of this nature and the first to include a lake component. We evaluated a set of management actions to simulate anticipated effects of P reduction strategies on in-lake total phosphorus (TP) concentrations. The INCA-P scenarios show the difficulty of achieving large-scale reductions from the watershed, given the low rates of P export; however, the study shows that a multifaceted strategy, including fertilizer reduction, addition of buffer strips, more stringent controls on sewage treatment plant effluent, and reduced deposition of P to the lake surface, could achieve a 25% reduction in lake-water TP concentrations and produce TP close to the target of 0.01 mg L-1.

Keywords

branched river; INCA-P; Lake Simcoe; management practices; phosphorus loading; water quality modelling

Published in

Inland Waters
2013, Volume: 3, number: 2, pages: 207-220
Publisher: FRESHWATER BIOLOGICAL ASSOC

      SLU Authors

    • Sustainable Development Goals

      SDG6 Ensure availability and sustainable management of water and sanitation for all
      SDG13 Take urgent action to combat climate change and its impacts

      UKÄ Subject classification

      Other Biological Topics

      Publication identifier

      DOI: https://doi.org/10.5268/IW-3.2.520

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/53613