Delin, Sofia
- Department of Soil and Environment, Swedish University of Agricultural Sciences
Research article2011Peer reviewed
Delin, Sofia; Strömberg, Niklas
The choice of manure application technique can affect both the spatial distribution of ammonium in soil and net nitrogen (N) mineralization, and thereby N availability to crops. In this study we compared net N mineralization and spatial ammonium distribution after different degrees of incorporation of solid chicken manure and cattle slurry into soil. Ammonium-specific fluorescing optodes were assembled with manure applied to soil in closed chambers and the spatial distribution of ammonium in different treatments was measured for 2 weeks. The results indicated that much ammonium from the manures was quickly adsorbed to clay particles. Consequently, the ammonium concentration in the soil solution was threefold higher in the sandy soil than in the clay soil studied. Ammonium was distributed over a larger soil volume from manure applied below the soil surface than from manure applied above. Because the optodes excluded ammonium adsorbed to soil particles, net N mineralization was instead studied in separate incubations using extraction with potassium chloride solution for determination of ammonium and nitrate. When manure was kept concentrated in lumps rather than being mixed with soil, nitrate levels were about five times smaller after 1 week and 5-10% more of the manure N occurred as mineral N after 2 weeks. There were no differences in net N mineralization between surface application and subsurface incorporation. In this study a new technique to visualize and measure ammonium patterns around manure in soil proved to be useful for evaluating ammonium distribution and adsorption, but net N mineralization required incubations.
European Journal of Soil Science
2011, volume: 62, number: 2, pages: 295-304
Publisher: WILEY-BLACKWELL
Agricultural Science
https://res.slu.se/id/publ/57268