Lindbladh, Matts
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences
Research article2002Peer reviewedOpen access
Lindbladh MS, O'Connor R, Jacobson GL
Little is known about the paleoecological histories of the three spruce species (white spruce, Picea glauca; black spruce, P. mariana; and red spruce P. rubens) in eastern North America, largely because of the difficulty of separating the three species in the pollen record. We describe a novel and effective classification method of distinguishing pollen grains on the basis of quantitative analysis of grain attributes. The method is illustrated by an analysis of a large sample of modern pollen grains (522 grains from 38 collections) of the three Picea species, collected from the region where the three species co-occur today. For each species X we computed a binary regression tree that classified each grain either as X or as not-X; these three determinations for each grain were then combined as Hamming codes in an error/uncertainty detection procedure. The use of Hamming codes to link multiple binary trees for error detection allowed identification and exclusion of problematic specimens, with correspondingly greater classification certainty among the remaining grains. We measured 13 attributes of 419 reference grains of the three species to construct the regression trees and classified 103 other reference grains by testing. Species-specific accuracies among the reliably classified grains were 100, 77, and 76% for P. glauca, P. mariana, and P. rubens, respectively, and 21, 30, and 22% of the grains by species, respectively, were problematic. The method is applicable to any multi-species classification problem for which a large reference sample is available
American Journal of Botany
2002, Volume: 89, number: 9, pages: 1459-1467 Publisher: BOTANICAL SOC AMER INC
Environmental Sciences related to Agriculture and Land-use
DOI: https://doi.org/10.3732/ajb.89.9.1459
https://res.slu.se/id/publ/612