Strömgren, Monika
- Department of Soil and Environment, Swedish University of Agricultural Sciences
Research article2014Peer reviewedOpen access
Leppelt, Thomas; Strömgren, Monika
Organic soils are a main source of direct emissions of nitrous oxide (N2O), an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time, which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori-identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta-study with a total amount of 659 annual N2O measurements, which was used to derive separate models for different land use types. We applied our models to available, spatially explicit input driver maps to upscale N2O emissions at European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 +/- 1.08 and 0.58 +/- 1.03 gN(2)O-N m(-2) a(-1), respectively. High fluxes from cropland sites were mainly controlled by low soil pH value and deep-drained ground-water tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast, N2O fluxes from natural peatlands were predominantly low (0.07 +/- 0.27 gN(2)O-N m(-2) a(-1)) and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 GgN(2)O-N a(-1), which also included fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 GgN(2)O-N a(-1). N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU) greenhouse gas inventory of 2011 from only 7% of the EU area. Thereby the model demonstrated that the major part (85 %) of the inventory is induced by anthropogenic management, which shows the significant reduction potential by rewetting and extensification of agriculturally used peat soils.
Biogeosciences
2014, Volume: 11, number: 23, pages: 6595-6612 Publisher: COPERNICUS GESELLSCHAFT MBH
Geosciences, Multidisciplinary
Ecology
Environmental Sciences
DOI: https://doi.org/10.5194/bg-11-6595-2014
https://res.slu.se/id/publ/65280