La Hera, Pedro
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences
Conference paper2013Peer reviewedOpen access
Morales DO; La, Hera P; Rehman SU
We analyze the problem of dynamic non-prehensile manipulation by considering the example of the butterfly robot. Our main objective is to study the problem of stabilizing periodic motions, which resemble some form of juggling acrobatics. To this end, we approach the problem by considering the framework of virtual holonomic constraints. Under this basis, we provide an analytical and systematic solution to the problems of trajectory planning and design of feedback controllers to guarantee orbital exponential stability. Results are presented in the form of simulation tests.
Underactuated mechanical systems; limit cycles; virtual holonomic constraints; transverse linearization; motion planning; nonlinear control
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
2013, pages: 2527-2532
Publisher: IEEE
2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
Other Electrical Engineering, Electronic Engineering, Information Engineering
Robotics and automation
Control Engineering
https://res.slu.se/id/publ/67432