Skip to main content
SLU publication database (SLUpub)

Research article2015Peer reviewed

Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna

Seitz, Frank; Rosenfeldt, Ricki R.; Storm, Katharina; Metreveli, G.; Schaumann, Gabriele E.; Schulz, Ralf; Bundschuh, Mirco

Abstract

Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials rarely consider potential implications of environmental variables. In order to increase our understanding in this respect, we investigated the acute and chronic effects of various nAg materials on Daphnia magna. Thereby, different nanoparticle size classes with a citrate coating (20-, similar to 30-, 60- as well as 100-nm nAg) and one size class without any coating (140 nm) were tested, considering at the same time two pH levels (6.5 and 8.0) as well as the absence or presence of dissolved organic matter (DOM; <0.1 or 8.0 mg total organic carbon/L). Results display a reduced toxicity of nAg in media with higher pH and the presence of DOM as well as increasing initial particle size, if similarly coated. This suggests that the associated fraction of Ag species <2 nm (including Ag+) is driving the nAg toxicity. This hypothesis is supported by normalizing the 48-h EC50-values to Ag species <2 nm, which displays comparable toxicity estimates for the majority of the nAg materials assessed. It may therefore be concluded that a combination of both the particle characteristics, i.e. its initial size and surface coating, and environmental factors trigger the toxicity of ion-releasing nanoparticles. (C) 2014 Elsevier Inc. All rights reserved.

Keywords

Nanomaterial; Silver; Acute toxicity; Crustacean; Environmental conditions

Published in

Ecotoxicology and Environmental Safety
2015, Volume: 111, pages: 263-270
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE

    Sustainable Development Goals

    SDG6 Ensure availability and sustainable management of water and sanitation for all

    UKÄ Subject classification

    Other Biological Topics

    Publication identifier

    DOI: https://doi.org/10.1016/j.ecoenv.2014.09.031

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/68252