Skip to main content
SLU publication database (SLUpub)

Book chapter2015Peer reviewed

Climate change and insect pest distribution range

Battisti, Andrea; Larsson, Stig


There is a pressing need to understand better the dynamics of species' distribution, in particular when it comes to predicting the outcomes of climate change-inflicted variations in the range distributions of insect pests. Several insect life history traits, such as survival, growth rate and voltinism, are likely to change in a warmer environment, and it is to be expected that at least some changes will contribute to altered range edges. For many insect taxa, range expansions are not easy to detect, simply because their presence remains undetected in habitats at range edges, where they are likely to occur at low densities. Insect pests are a group for which information on range expansion is beginning to accumulate, for the obvious reason that their effects on managed ecosystems often require action. Thus, increasingly managers of agriculture and forestry are concerned with the predicted range expansions of important insect pests.This chapter offers an update on the range expansions of insect pests in agriculture and forestry, native and alien. We summarize information from the literature where climate change has been interpreted as, or predicted to become, the driver of range expansion. We discuss the type of evidence for the expansion, ongoing or predicted to occur, and aim to classify according to its empirical nature.A critical read of the database of the literature on climate change resulted in surprisingly few documented examples of climate change-induced range expansion. Of course, long-term trends in the distribution and abundance of insect pests are notoriously difficult to document. Thus, it is possible that more insect pests could have responded to climate change, or are likely to do so in the near future, than can be detected in our literature search. It is also possible, however, that biological systems, including insect pests, are less sensitive to direct climate effects than previously thought (due to the buffering effects of trophic interactions). Future research needs to focus more on the mechanisms of responses to changed climate in order to understand better, and predict more accurately, the likelihood that insect pests will expand their outbreak range.

Published in

Title: Climate change and insect pests
ISBN: 978-1-78064-378-6
Publisher: CAB International

    Associated SLU-program

    SLU Plant Protection Network

    UKÄ Subject classification

    Climate Research

    Permanent link to this page (URI)