Skip to main content
Research article - Peer-reviewed, 2016

Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation

de Wit, Heleen A.; Ledesma, Jose; Futter, Martyn

Abstract

Comprehensive and credible peatland carbon budgets, needed for global carbon accounting, must include lateral aquatic organic carbon export. Here, we quantify aquatic dissolved organic carbon (DOC) export for an Atlantic bog in subarctic Norway, the Andøya peatland, and test for sensitivity to climatic drivers. Hydrology, DOC concentrations and DOC export were simulated for 2000–2013 using the process-based catchment model Integrated Catchments model for Carbon(INCA-C), calibrated to site-specific water chemistry and hydrology (2011–2014) using readily-available data on temperature, precipitation and seasalt deposition. Measured streamwater DOC declined under seasalt episodes and was strongly positively related to temperature. Model calibrations successfully reproduced the water balance, variation in runoff (R2=0.67; Nash–Sutcliffe model efficiency NS=0.67) and DOC concentrations (R2=0.85; NS=0.84). The most sensitive model parameters related to temperature-sensitivity of DOC production and DOC (de)sorption sensitivity to seasalts. Model uncertainty related to parameter space was similar to interannual variation in DOC export. Mean annual modelled DOC export was 7.2±0.7g C m−2 year−1, roughly 35% of the net land–atmospheric CO2 exchange at Andøya from 2009 to 2012 (estimated elsewhere). Current and antecedent mean temperature and precipitation were strong drivers of seasonal modelled DOC export, implying that warmer and wetter summers will lead to more DOC export. Evaluation of similar climate impacts on net peatland carbon accumulation requires additional exploration of the climate-sensitivity of land–atmosphere fluxes of CO2 and methane. Process-based models are valuable tools to account for lateral DOC exports in carbon balances of northern peatlands, especially where long-term monitoring data are lacking.

Keywords

Aquatic DOC export; Peatland; Climate; Carbon balance; Atlantic subarctic blanket bog; Seasalt deposition

Published in

Biogeochemistry
2016, volume: 127, number: 2-3, pages: 305-321

Authors' information

de Wit, Heleen A.
Norwegian Institute for Water Research (NIVA)
Ledesma, Jose
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment

Sustainable Development Goals

SDG13 Climate action

UKÄ Subject classification

Geochemistry
Other Earth and Related Environmental Sciences
Climate Research
Geosciences, Multidisciplinary
Environmental Sciences

Publication Identifiers

DOI: https://doi.org/10.1007/s10533-016-0182-z

URI (permanent link to this page)

https://res.slu.se/id/publ/74251