Skip to main content
SLU publication database (SLUpub)

Research article2017Peer reviewed

Apparent Winter CO2 uptake by a boreal forest due to decoupling

Jocher, Georg; Ottosson Löfvenius, Mikaell; De Simon, Giuseppe; Hörnlund, Thomas; Linder, Sune; Lundmark, Tomas; Marshall, John D; Nilsson, Mats; Näsholm, Torgny; Tarvainen, Lasse; Öquist, Mats; Peichl, Matthias

Abstract

Net uptake of carbon dioxide (CO2) was observed during the winter when using the eddy covariance (EC) technique above a 90-year-old Scots pine (Pinus sylvestris L.) stand in northern Sweden. This uptake occurred despite photosynthetic dormancy. This discrepancy led us to investigate the potential impact of decoupling of below- and above-canopy air mass flow and accompanying below-canopy horizontal advection on these measurements. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (sigma(w)), derived from EC measurements above and below the canopy, as the main mixing criterion. We identified 0.33 m s(-1) and 0.06 m s(-1) as site-specific o thresholds for above and below canopy, respectively, to reach the fully coupled state. Decoupling was observed in 45% of all cases during the measurement period (5.11.2014-25.2.2015). After filtering out decoupled periods the above-canopy mean winter NEE shifted from -0.52 mu mol m(-2) s(-1) to a more reasonable positive value of 0.31 mu mol m(-2) s(-1). None of the above-canopy data filtering criteria we tested (i.e., friction velocity threshold; horizontal wind speed threshold; single-level sigma(w) threshold) ensured sufficient mixing. All missed critical periods that were detected only by the two-level filtering approach. Tower-surrounding topography induced a predominant below-canopy wind direction and consequent wind shear between above- and below-canopy air masses. These processes may foster decoupling and below-canopy removal of CO2 rich air. To determine how broadly such a topographical influence might apply, we compared the topography surrounding our tower to that surrounding other forest flux sites worldwide. Medians of maximum elevation differences within 300m and 1000 m around 110 FLUXNET forest EC towers were 24 m and 66 m, respectively, compared to 24 m and 114 m, respectively, at our site. Consequently, below canopy flow may influence above-canopy NEE detections at many forested EC sites. Based on our findings we suggest below-canopy measurements as standard procedure at sites evaluating forest CO2 budgets.

Keywords

Advection; Coupling/decoupling; Eddy covariance; FLUXNET; Net ecosystem CO2 exchange; Scots pine

Published in

Agricultural and Forest Meteorology
2017, Volume: 232, pages: 23-34