Skip to main content
SLU publication database (SLUpub)

Research article2016Peer reviewedOpen access

The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes

García-Palacios, Pablo; Mckie, Brendan; Handa, Ira Tanya; Frainer, André; Hättenschwiler, Stephan

Abstract

1. Plant leaf litter comprises the major common source of energy and nutrients in forested soil and freshwater ecosystems world-wide. However, despite the similarity of physical and biochemical processes, generalizations across aquatic and terrestrial ecosystems regarding litter decomposition drivers remain elusive.2. We re-analysed data from a published field decomposition experiment conducted in two ecosystems (forest floors and streams) across five biomes (from the tropics to subarctic) with increasing decomposer community complexity (microbes, microbes and mesofauna, microbes and meso- and macrofauna).3. Using a wide litter quality gradient (15 litter combinations), we aimed to disentangle the roles of decomposer community complexity from that of leaf litter traits (18 traits encompassing four broad trait categories: nutrients, C quality, physical structure and stoichiometry) on litter C and N loss. Comparisons of decomposition drivers between ecosystems were evaluated across and within biomes.4. Differences in environmental conditions (e.g. climate, soil/water fertility) and litter nutrients - with a particular focus on Mg and Ca - across biomes were the major drivers of litter C loss in both ecosystems, but decomposer complexity also played a prominent role in streams. Within biomes, we observed consistent effects of litter nutrients and stoichiometry on litter C and N loss between ecosystems, but the effects of decomposer complexity differed between streams and forest floors in the temperate, Mediterranean and tropical biomes.5. Our results highlight that, beyond the litter traits commonly identified as controlling decomposition (e.g. C, N and lignin), micronutrients (e.g. Mg and Ca) can also play an important, and globally consistent, role in both aquatic and terrestrial ecosystems. In addition, in forest streams the complexity of decomposer communities had similar importance as litter traits for predicting litter C and N turnover across all five biomes.6. The identification of common drivers in our large-scale ecosystem comparison suggests a basis to develop common models across aquatic and terrestrial ecosystems for C and N dynamics during decomposition. Future modelling efforts should account for the global similarities (litter micronutrient effects) and biome-level differences (contingent decomposer effects) found between ecosystems.

Keywords

carbon cycle; forest floors; litter carbon loss; litter micronutrients; litter nitrogen loss; streams

Published in

Functional Ecology
2016, Volume: 30, number: 5, pages: 819-829
Publisher: WILEY-BLACKWELL

      SLU Authors

    • Sustainable Development Goals

      SDG15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

      UKÄ Subject classification

      Ecology

      Publication identifier

      DOI: https://doi.org/10.1111/1365-2435.12589

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/80833