Skip to main content
SLU publication database (SLUpub)

Research article2017Peer reviewedOpen access

From agricultural use of sewage sludge to nutrient extraction: A soil science outlook

Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

Abstract

The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metalcontaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.

Keywords

Ash; Long; term field experiments; Metals; Mono; ammonium phosphate; Soil biology; Urban-rural nutrient recycling

Published in

AMBIO: A Journal of the Human Environment
2017, Volume: 46, number: 2, pages: 143-154
Publisher: SPRINGER

      SLU Authors

        • Sustainable Development Goals

          Make cities and human settlements inclusive, safe, resilient and sustainable
          End hunger, achieve food security and improved nutrition and promote sustainable agriculture
          Ensure sustainable consumption and production patterns

          UKÄ Subject classification

          Soil Science
          Agricultural Science

          Publication identifier

          DOI: https://doi.org/10.1007/s13280-016-0816-3

          Permanent link to this page (URI)

          https://res.slu.se/id/publ/81138