Skip to main content
SLU publication database (SLUpub)

Research article2006Peer reviewed

Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

Leven L, Nyberg K, Korkea-Aho L, Schnurer A


This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC50=26 mu g phenols g(-1) d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC50=43-1 10 mu g g(-1) d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem. (c) 2005 Elsevier B.V. All rights reserved

Published in

Science of the Total Environment
2006, Volume: 364, number: 1-3, pages: 229-238