Skip to main content
Research article - Peer-reviewed, 2017

Agricultural factors affecting Fusarium communities in wheat kernels

Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

Abstract

Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level.Lower levels of Fusariwn mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-alpha amplicons. In addition, we quantified Fusariwn spp. using real-time PCR to reveal differences in biomass between fields.We identified 12 Fusariwn operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusariwn spp. ranged two orders of magnitude between fields. Two pairs of Fusariurt species co-occurred between fields: F. poae with F. tricinctwn and F. culmorwn with F. sporofrichoides. We could not detect any difference in Fusariwn communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an impact on Fusariwn communities, specifically increasing the abundance of F. tricinctwn. There were geographical differences in the Fusarium community composition where F. graminearwn was more abundant in the western part of Sweden. The application of amplicon sequencing provided a comprehensive view of the Fusarium community in cereals. This gives us better opportunities to understand the ecology of Fusarium spp., which is important in order to limit FHB and mycotoxin contamination in cereals.

Keywords

Triticum aestivum; Grain; Gibberella; High-throughput sequencing; Pathogen ecology

Published in

International Journal of Food Microbiology
2017, volume: 252, pages: 53-60

Authors' information

Swedish University of Agricultural Sciences, Department of Crop Production Ecology
Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology
Kolseth, Anna-Karin
Swedish University of Agricultural Sciences, Department of Crop Production Ecology
Steinberg, Christian
National Institute of Agricultural Research (INRA)
Swedish University of Agricultural Sciences, Department of Crop Production Ecology

Associated SLU-program

SLU Network Plant Protection

UKÄ Subject classification

Microbiology
Agricultural Science
Ecology

Publication Identifiers

DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.04.011

URI (permanent link to this page)

https://res.slu.se/id/publ/83457