Yi, Jun
- Department of Plant Biology, Swedish University of Agricultural Sciences
- Linnean Centre for Plant Biology
Research article2017Peer reviewedOpen access
Cabout, Simon; Leask, Megan P.; Varghese, Shiny; Yi, Jun; Peters, Benjamin; Conze, Lei Liu; Kohler, Claudia; Brownfield, Lynette
The JASON (JAS) protein plays an important role in maintaining an organelle band across the equator of male meiotic cells during the second division, with its loss leading to unreduced pollen in Arabidopsis. In roots cells, JAS localizes to the Golgi, tonoplast and plasma membrane. Here we explore the mechanism underlying the localization of JAS. Overall, our data show that leaky ribosom scanning and alternative translation initiation sites (TISs) likely leads to the formation of two forms of JAS: a long version with an N-terminal Golgi localization signal and a short version with a different N-terminal signal targeting the protein to the plasma membrane. The ratio of the long and short forms of JAS is developmentally regulated, with both being produced in roots but the short form being predominant and functional during meiosis. This regulation of TISs in meiocytes ensures that the short version of JAS is formed during meiosis to ensure separation of chromosome groups and the production of reduced pollen. We hypothesize that increased occurrence of unreduced pollen under stress conditions may be a consequence of altered usage of JAS TISs during stress.
Alternative translation initiation; Golgi; JASON; leaky ribosome scanning; meiosis; plasma membrane; subcellular localization; unreduced gametes
Journal of Experimental Botany
2017, Volume: 68, number: 15, pages: 4205-4217
Biodiversity
Botany
DOI: https://doi.org/10.1093/jxb/erx222
https://res.slu.se/id/publ/86014