Skip to main content
SLU publication database (SLUpub)

Review article2014Peer reviewedOpen access

Applications of step-selection functions in ecology and conservation

Thurfjell, Henrik; Ciuti, Simone; Boyce, Mark S.


Recent progress in positioning technology facilitates the collection of massive amounts of sequential spatial data on animals. This has led to new opportunities and challenges when investigating animal movement behaviour and habitat selection. Tools like Step Selection Functions (SSFs) are relatively new powerful models for studying resource selection by animals moving through the landscape. SSFs compare environmental attributes of observed steps (the linear segment between two consecutive observations of position) with alternative random steps taken from the same starting point. SSFs have been used to study habitat selection, human-wildlife interactions, movement corridors, and dispersal behaviours in animals. SSFs also have the potential to depict resource selection at multiple spatial and temporal scales. There are several aspects of SSFs where consensus has not yet been reached such as how to analyse the data, when to consider habitat covariates along linear paths between observations rather than at their endpoints, how many random steps should be considered to measure availability, and how to account for individual variation. In this review we aim to address all these issues, as well as to highlight weak features of this modelling approach that should be developed by further research. Finally, we suggest that SSFs could be integrated with state-space models to classify behavioural states when estimating SSFs.

Published in

Movement Ecology
2014, Volume: 2, article number: 4

    UKÄ Subject classification

    Probability Theory and Statistics

    Publication identifier


    Permanent link to this page (URI)