Skip to main content
SLU publication database (SLUpub)

Research article2017Peer reviewedOpen access

Climate drivers of bark beetle outbreak dynamics in Norway spruce forests

Marini, Lorenzo; Okland, Bjorn; Jonsson, Anna Maria; Bentz, Barbara; Carroll, Allan; Forster, Beat; Gregoire, Jean-Claude; Hurling, Rainer; Nageleisen, Louis Michel; Netherer, Sigrid; Ravn, Hans Peter; Weed, Aaron; Schroeder, Martin

Abstract

Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time-series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall deficit and warm temperatures. Large availability of storm-felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. The large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large-scale drivers can be used as early warning indicators of increasing local outbreak probability.

Published in

Ecography
2017, Volume: 40, number: 12, pages: 1426-1435 Publisher: WILEY

      SLU Authors

    • Sustainable Development Goals

      SDG13 Climate action

      UKÄ Subject classification

      Ecology

      Publication identifier

      DOI: https://doi.org/10.1111/ecog.02769

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/92679