Skip to main content
SLU publication database (SLUpub)

Research article2017Peer reviewed

Quantifying post-fire fallen trees using multi-temporal lidar

Bohlin, Inka; Olsson, Hakan; Bohlin, Jonas; Granstrom, Anders


Massive tree-felling due to root damage is a common fire effect on burnt areas in Scandinavia, but has so far not been analyzed in detail. Here we explore if pre- and post-fire lidar data can be used to estimate the proportion of fallen trees. The study was carried out within a large (14,000 ha) area in central Sweden burnt in August 2014, where we had access to airborne lidar data from both 2011 and 2015. Three data-sets of predictor variables were tested: POST (post-fire lidar metrics), D1F (difference between post- and pre-fire lidar metrics) and combination of those two (POST_DIF). Fractional logistic regression was used to predict the proportion of fallen trees. Training data consisted of 61 plots, where the number of fallen and standing trees was calculated both in the field and with interpretation of drone images. The accuracy of the best model was tested based on 100 randomly selected validation plots with a size of 25 x 25 m.Our results showed that multi-temporal lidar together with field-collected training data can be used for quantifying post-fire tree felling over large areas. Several height-, density- and intensity metrics correlated with the proportion of fallen trees. The best model combined metrics from both datasets (POST DIF), resulting in a RMSE of 0.11. Results were slightly poorer in the validation plots with RMSE of 0.18 using pixel size of 12.5 m and RMSE of 0.15 using pixel size of 6.25 m. Our model performed least well for stands that had been exposed to high-intensity crown fire. This was likely due to the low amount of echoes from the standing black tree skeletons. Wall-to-wall maps produced with this model can be used for landscape level analysis of fire effects and to explore the relationship between fallen trees and forest structure, soil type, fire intensity or topography.


Fallen trees; Post-fire effect; ALS; Multi-temporal; Drone-image; Mapping

Published in

International Journal of Applied Earth Observation and Geoinformation
2017, Volume: 63, pages: 186-195