Skip to main content
SLU publication database (SLUpub)

Research article2017Peer reviewedOpen access

How does tillage intensity affect soil organic carbon? A systematic review

Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.; Katterer, Thomas; Lugato, Emanuele; Thomsen, Ingrid K.; Jorgensen, Helene B.; Isberg, Per-Erik

Abstract

Background:  The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑tice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT ) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta‑analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC?Methods:  We systematically reviewed relevant research in boreo‑temperate regions using, as a basis, evidence iden‑tified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta‑analyses were per‑formed to investigate the impact of reducing tillage [from high (HT ) to intermediate intensity (IT ), HT to NT, and from IT to NT ] for SOC concentration and SOC stock in the upper soil and at lower depths.Results:  A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/kg± 0.34 (SE)] and HT [2.09 g/kg± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermedi‑ate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ha± 1.95 (SE)] or IT [3.85 Mg/ha± 1.64 (SE)]. No other comparisons were significant.Conclusions:  The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more produc‑tive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.

Keywords

Agriculture; Conservation; Till; Plough; Farming; Land management; Climate change; Land use change; Carbon sequestration

Published in

Environmental Evidence
2017, Volume: 6, number: 1, article number: 30

    Sustainable Development Goals

    SDG13 Take urgent action to combat climate change and its impacts
    SDG2 End hunger, achieve food security and improved nutrition and promote sustainable agriculture
    SDG12 Ensure sustainable consumption and production patterns

    UKÄ Subject classification

    Soil Science

    Publication identifier

    DOI: https://doi.org/10.1186/s13750-017-0108-9

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/92928