Skip to main content
SLU publication database (SLUpub)

Research article2018Peer reviewedOpen access

Status assessment of agricultural drainage ditches

Aviles, D.; Wesstrom, I.; Joel, A.


Poor maintenance, environmental concerns, land use changes, and adaptation to climate change are creating a growing need for better agricultural drainage. The objectives of this study were to identify ditch properties that can be evaluated visually on-site and related soil erosion processes, and to define parameters requiring more intensive study and estimate these using simplified methods. The study included surveys of ditches in various soils using MADRAS (Minnesota Agricultural Ditch Research Assessment for Stability) to classify ditch status. To explain why some ditch segments were in poor condition, additional field and laboratory studies were carried out. Soil samples were taken for analysis of particle size distribution, unsaturated direct shear strength, and critical stress for erosion. The HEC-RAS data model was used for simulation of hydraulic forces acting at different flow rates. Digital maps of land use in the catchment area in different years were used to estimate changes in runoff conditions over time. MADRAS proved to be a suitable tool for rapid assessment of stability problems in ditches. The HEC-RAS simulations were a good complement to MADRAS in assessing how changes in land use affected the hydraulic load and in highlighting bottlenecks in the system. However, the hydraulic load did not adequately explain the degree of degradation in some ditch segments. Measurements of soil shear strength were a good aid to understanding existing degradation. Thus, assessment of soil erodibility and bank stability is essential in anticipating the risk of future erosion processes in ditches.


Cohesive strength meter; HEC-RAS; MADRAS; Unsaturated direct shear strength

Published in

Transactions of the Asabe
2018, Volume: 61, number: 1, pages: 263-271

    Sustainable Development Goals

    Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss
    Take urgent action to combat climate change and its impacts
    End hunger, achieve food security and improved nutrition and promote sustainable agriculture

    UKÄ Subject classification

    Soil Science

    Publication identifier


    Permanent link to this page (URI)