Guzhva, Oleksiy
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences
Research article2018Peer reviewed
Ardo, Hakan; Guzhva, Oleksiy; Nilsson, Mikael; Herlin, Anders H.
In the field of applied animal behaviour, video recordings of a scene of interest are often made and then evaluated by experts. This evaluation is based on different criteria (number of animals present, an occurrence of certain interactions, the proximity between animals and so forth) and aims to filter out video sequences that contain irrelevant information. However, such task requires a tremendous amount of time and resources, making manual approach ineffective. To reduce the amount of time the experts spend on watching the uninteresting video, this study introduces an automated watchdog system that can discard some of the recorded video material based on user-defined criteria. A pilot study on cows was made where a convolutional neural network detector was used to detect and count the number of cows in the scene as well as include distances and interactions between cows as filtering criteria. This approach removed 38% (50% for additional filter parameters) of the recordings while only losing 1% (4%) of the potentially interesting video frames.
neural nets; video recording; image sequences; video signal processing; convolutional neural network; cow interaction watchdog; animal behaviour; video sequences; automated watchdog system; video recording; user-defined criteria; video frames
IET Computer Vision
2018, Volume: 12, number: 2, pages: 171-177 Publisher: INST ENGINEERING TECHNOLOGY-IET
Computer Vision and Robotics (Autonomous Systems)
DOI: https://doi.org/10.1049/iet-cvi.2017.0077
https://res.slu.se/id/publ/94540