Skip to main content
SLU publication database (SLUpub)

Research article2018Peer reviewed

A peptide derived from enzymatic digestion of globulins from amaranth shows strong affinity binding to the replication origin of Tomato yellow leaf curl virus reducing viral replication in Nicotiana benthamiana

Mendoza-Figueroa, J. S.; Kvarnheden, A.; Mendez-Lozano, J.; Rodriguez-Negrete, E. -A.; Arreguin-Espinosa de los Monteros, R.; Soriano-Garcia, M.

Abstract

Tomato yellow leaf curl virus (TYLCV; genus Begomovirus; family Geminiviridae) infects mainly plants of the family Solanaceae, and the infection induces curling and chlorosis of leaves, dwarfing of the whole plant, and reduced fruit production. Alternatives for direct control of TYLCV and other geminiviruses have been reported, for example, the use of esterified whey proteins, peptide aptamer libraries or artificial zinc finger proteins. The two latter alternatives affect directly the replication of TYLCV as well as of other geminiviruses because the replication structures and sequences are highly conserved within this virus family. Because peptides and proteins offer a potential solution for virus replication control, in this study we show the isolation, biochemical characterization and antiviral activity of a peptide derived from globulins of amaranth seeds (Amaranthus hypochondriacus) that binds to the replication origin sequence (OriRep) of TYLCV and affects viral replication with a consequent reduction of disease symptoms in Nicotiana benthamiana. Aromatic peptides obtained from papain digests of extracted globulins and albumins of amaranth were tested by intrinsic fluorescent titration and localized surface resonance plasmon to analyze their binding affinity to OriRep of TYLCV. The peptide AmPep1 (molecular weight 2.076 KDa) showed the highest affinity value (Kd = 1.8 nM) for OriRep. This peptide shares a high amino acid similarity with a part of an amaranth 11S globulin, and the strong affinity of AmPep1 could be explained by the presence of tryptophan and lysine facilitating interaction with the secondary structure of OriRep. In order to evaluate the effect of the peptide on in vitro DNA synthesis, rolling circle amplification (RCA) was performed using as template DNA from plants infected with TYLCV or another begomovirus, pepper huasteco yellow vein virus (PHYVV), and adding AmPep1 peptide at different concentrations. The results showed a decrease in DNA synthesis of both viruses at increasing concentrations of AmPep1. To further confirm the antiviral activity of the peptide in vivo, AmPep1 was infiltrated into leaves of N. benthamiana plants previously infected with TYLCV. Plants treated with AmPep1 showed a significant decrease in virus titer compared with untreated N. benthamiana plants as well as reduced symptom progression due to the effect of AmPep1 curtailing TYLCV replication in the plant. The peptide also showed antiviral activity in plants infected with PHYVV. This is the first report, in which a peptide is directly used for DNA virus control in plants, supplied as exogenous application and without generation of transgenic lines.

Published in

Pesticide Biochemistry and Physiology
2018, Volume: 145, pages: 56-65 Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE

    Associated SLU-program

    SLU Plant Protection Network

    UKÄ Subject classification

    Biochemistry and Molecular Biology

    Publication identifier

    DOI: https://doi.org/10.1016/j.pestbp.2018.01.005

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/94927