Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2018

Phosphorus speciation in a long-term manure-amended soil profile - Evidence from wet chemical extraction, P-31-NMR and P K-edge XANES spectroscopy

Schmieder, Frank; Bergstrom, Lars; Riddle, Matthew; Gustafsson, Jon-Petter; Klysubun, Wantana; Zehetner, Franz; Condron, Leo; Kirchmann, Holger


Long-term application of manure can lead to an enrichment of phosphorus (P) in agricultural soils. To which extent this P leaches into drainage systems and thereby potentially contributing to eutrophication of surface waters, depends on the distribution and speciation of P present in the soil. In this study the P speciation and related soil characteristics were investigated for a sandy loam soil that had been receiving manure for > 40 years. A combination of solution-state P-31-NMR, P K-edge XANES and wet chemical extractions was applied.Topsoil P contents were with 42 mmol kg(-1) more than twice as high as in the sub soil (14-18 mmol kg(-1)). Linear combination fitting (LCF) of P K-edge XANES spectra indicated that P accumulation in the topsoil occurred predominantly via adsorption of inorganic P to Fe/Al hydroxide surfaces, resulting in substantial P saturation of these mineral phases. Up to 76% of the topsoil P was associated with Al or Fe. The organic P content was low (5-10%), but an additional important topsoil P pool identified with XANES-LCF was amorphous calcium phosphate (30%), which may have been added with manure or formed in situ. Towards the deeper subsoil the relative portion of primary apatite increased progressively and reached 80% of total P at a depth of 70 to 80 cm. These results highlight the importance of Fe and Al mineral phases for P retention in long-term manure-amended soils also under non-acidic conditions.

Published in

2018, Volume: 322, pages: 19-27