Tröger, Rikard
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences
Research article2018Peer reviewedOpen access
Troger, Rikard; Klockner, Philipp; Ahrens, Lutz; Wiberg, Karin
A multi-residue screening method for simultaneous measurement of a wide range of micropollutants in drinking water (DW) resources was developed. The method was applied in a field study in central Sweden on water from source to tap, including samples of surface water (upstream and downstream of a wastewater treatment plant, WVVTP), intake water before and after a DW treatment plant (DWTP, pilot and full-scale), treated DW leaving the plant and tap water at end users. Low detection limits (low ng L-1 levels) were achieved by using large sample volumes (5 L) combined with ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS). In total, 134 different micropollutants were analyzed, including pesticides, pharmaceuticals and personal care products (PPCPs), drug-related compounds, food additives, and perfluoroalkyl substances (PFASs). Of these 134 micropollutants, 41 were detected in at least one sample, with individual concentrations ranging from sub ng L-1 levels to similar to 80 ng L-1. Two solid phase extraction (SPE) cartridges (Oasis HLB and Bond-Elut ENV) were shown to be complementary in the field study, with three compounds detected exclusively using HLB. The total concentration in treated drinking water (56-57 ng L-1) was at a similar level as upstream from the VVWTP (79-90 ng L-1). The composition of micropollutants changed along the water path, to a higher fraction of food additives and PFASs. Median treatment efficiency in the full-scale DWTP was close to 0%, but with high variability for individual compounds. In contrast, median treatment efficiency in the pilot-scale DVVTP was similar to 90% when using nanofiltration followed by a freshly installed granulated active carbon (GAC) filter. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
Drinking water; Mass spectrometry; Micropollutants; Mulfiresidue method; Water treatment
Science of the Total Environment
2018, Volume: 627, pages: 1404-1432
Publisher: ELSEVIER SCIENCE BV
SDG3 Good health and well-being
SDG6 Clean water and sanitation
Water Treatment
DOI: https://doi.org/10.1016/j.scitotenv.2018.01.277
https://res.slu.se/id/publ/95362