Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2018

Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in estimation accuracy

Vastaranta, Mikko; Yrttimaa, Tuomas; Holopainen, Markus; Hyyppae, Juha; Yu, Xiaowei; Luoma, Ville; Karjalainen, Mika; Saarinen, Ninni; Wulder, Michael A.; White, Joanne C.; Persson, Henrik J.; Hollaus, Markus


The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m(2) were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB(2014)) were projected to 2016 using growth models (AGB(Projected_2016)) and combined with the AGB estimates derived from the 2016 data (AGB(2016)). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB(2016_pred2014)). Based on our results, the change in the 90(th) percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB(2016) had a bias of -7.5% (-10.6 Mg ha(-1)) and root mean square error (RMSE) of 26.0% (36.7 Mg ha(-1)) as the respective values for AGB(Projected_2016) were 7.0% (9.9 Mg ha(-1)) and 21.5% (30.8 Mg ha(-1)). AGB(2016_pred2014) had a bias of -19.6% (-27.7 Mg ha(-1)) and RMSE of 33.2% (46.9 Mg ha(-1)). By combining predictions of AGB(2016) and AGB(Projected_2016) at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of -0.25% (-0.4 Mg ha(-1)) was obtained when equal weights of 0.5 were given to the AGB(Projected_2016) and AGB(2016) estimates. Respectively, RMSE of 20.9% (29.5 Mg ha(-1)) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.

Published in

International Journal of Remote Sensing
2018, Volume: 39, number: 23, pages: 8766-8783

    UKÄ Subject classification

    Forest Science
    Remote Sensing

    Publication Identifiers


    Permanent link to this page (URI)