Yadav, Pooja
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences
Research article2019Peer reviewed
Shanmugam, Kavitha; Gadhamshetty, Venkataramana; Yadav, Pooja; Athanassiadis, Dimitris; Tysklind, Mats; Upadhyayula, Venkata K. K.
Vehicle lightweighting strategies must deliver sustainable returns to customers and society. This work evaluates the sustainable return on investment (SROI) of lightweighted advanced high strength steel (AHSS) and carbon fiber reinforced polymer (CFRP)-intensive multimaterial bodies in white (BIWs) for automobiles. The SROI depends on the lightweighted BIW's manufacturing cost and the difference in sustainable cost between a baseline (mild steel) BIW and the lightweighted alternative. The sustainable cost is the sum of the customer's lifetime fuel (or electricity) costs and the costs of environmental externalities. A cradle-to-grave life cycle assessment (LCA) was conducted to quantify the environmental impacts of CFRP and AHSS BIWs in gasoline-fueled cars, bioethanol (E85)-fueled cars, and battery electric vehicles (BEVs) driven for a lifetime distance of 200 000 km. For cars fueled with gasoline- or corn-based bioethanol, the CFRP BIW yielded the lowest SROI; the AHSS BIW performed best for BEVs and cars fueled with wood bioethanol. However, the commercial availability of recycled carbon fiber should increase the SROI of the CFRP BIW in the future. Additionally, the SROI of CFRP BIWs is maximized when carbon fiber production is done using energy from a low carbon-intensity electric grid or decentralized sources such as waste-to-energy incineration plants.
Carbon fiber reinforced polymer composites (CFRP); Advanced high strength steel (AHSS); Automotive body in white; Automotive lightweighting Environmental performance; Sustainable return on investment; Woody or corn bioethanol; Battery electric vehicle (BEV)
ACS Sustainable Chemistry and Engineering
2019, Volume: 7, number: 5, pages: 4951-4963 Publisher: AMER CHEMICAL SOC
SDG7 Affordable and clean energy
SDG9 Industry, innovation and infrastructure
SDG12 Responsible consumption and production
Polymer Technologies
DOI: https://doi.org/10.1021/acssuschemeng.8b05588
https://res.slu.se/id/publ/99143