Vico, Giulia
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences
Research article2019Peer reviewedOpen access
Feng, Xue; Ackerly, David D.; Dawson, Todd E.; Manzoni, Stefano; McLaughlin, Blair; Skelton, Robert P.; Vico, Giulia; Weitz, Andrew P.; Thompson, Sally E.
Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012-2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a "common garden" thought experiment, how existing trait-based or response-based isohydricity metrics can be confounded by these environmental variations, leading to Type-1 (false positive) and Type-2 (false negative) errors; and (d) advocate for the use of model-based approaches for formulating alternate classification schemes. Building on recent insights from greenhouse and vineyard studies, we offer additional evidence across multiple field sites to demonstrate the importance of spatial and temporal drivers of plants' apparent isohydricity. This evidence challenges the use of isohydricity indices, per se, to characterize plant water relations at the global scale.
classification; intrinsic traits; plant water potentials
Plant, Cell and Environment
2019, Volume: 42, number: 4, pages: 1104-1111
Publisher: WILEY
Botany
DOI: https://doi.org/10.1111/pce.13486
https://res.slu.se/id/publ/99564