Thyrel, Mikael
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences
- Umeå University
Research article2019Peer reviewedOpen access
Strandberg, Anna; Skoglund, Nils; Thyrel, Mikael; Lestander, Torbjorn A.; Brostrom, Markus; Backman, Rainer
Ash formation during single-fuel pellet combustion of wheat straw at 700 and 1000 degrees C was studied throughout fuel conversion by quench cooling and analysis at different char conversion degrees. The combination of X-ray microtomography analysis and scanning electronic microscopy with energy-dispersive X-ray spectroscopy showed that ash accumulated in rigid net structures at 700 degrees C with streaks or small beads surrounding the char, and the pellet mostly maintained its size during the entire fuel conversion. At 1000 degrees C, the ash formed high-density melts that developed into bubbles on the surface. As the conversion proceeded, these bubbles grew in size and covered parts of the active char surface area, but without entirely blocking the gas transport. The successive char conversion dissolved increasing amounts of calcium in the potassium silicate melts, probably causing differences in the release of potassium to the gas phase. Similarities were found with slag from a combustion experiment in a domestic boiler, with regard to relative composition and estimated and apparent viscosity of the slag. Complete char encapsulation by ash layers limiting char burnout was not found at the single pellet level, nor to any greater extent from the experiment performed in a small domestic boiler.
Energy and Fuels
2019, Volume: 33, number: 3, pages: 2308-2318 Publisher: AMER CHEMICAL SOC
Bioenergy
DOI: https://doi.org/10.1021/acs.energyfuels.8b04294
https://res.slu.se/id/publ/99576