Skip to main content
SLU publication database (SLUpub)

Research article2019Peer reviewedOpen access

Earth history and the passerine superradiation

Oliveros, Carl H.; Field, Daniel J.; Ksepka, Daniel T.; Barker, F. Keith; Aleixo, Alexandre; Andersen, Michael J.; Alstrom, Per; Benz, Brett W.; Braun, Edward L.; Braun, Michael J.; Bravo, Gustavo A.; Brumfield, Robb T.; Chesser, R. Terry; Claramunt, Santiago; Cracraft, Joel; Cuervo, Andres M.; Derryberry, Elizabeth P.; Glenn, Travis C.; Harvey, Michael G.; Hosner, Peter A.;
Show more authors

Abstract

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyper-diverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass similar to 47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.

Keywords

Passeriformes; diversification; macroevolution; climate; biogeography

Published in

Proceedings of the National Academy of Sciences of the United States of America
2019, Volume: 116, number: 16, pages: 7916-7925 Publisher: NATL ACAD SCIENCES

    UKÄ Subject classification

    Evolutionary Biology

    Publication identifier

    DOI: https://doi.org/10.1073/pnas.1813206116

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/99923