Skip to main content
SLU publication database (SLUpub)

Abstract

Life cycle adaptation to latitudinal and seasonal variation in photoperiod and temperature is a major determinant of evolutionary success in flowering plants. Whereas the life cycle of the dicotyledonous model species Arabidopsis thaliana is controlled by two epistatic genes, FLOWERING LOCUS C and FRIGIDA [1-3], three unrelated loci (VERNALIZATION 1-3) determine the spring and winter habits of monocotyledonous plants such as temperate cereals [4-6]. In the core eudicot species Beta vulgaris, whose lineage diverged from that leading to Arabidopsis shortly after the monocot-dicot split 140 million years ago [7, 8], the bolting locus B [9] is a master switch distinguishing annuals from biennials. Here, we isolated B and show that the pseudo-response regulator gene BOLTING TIME CONTROL 1 (BvBTC1), through regulation of the FLOWERING LOCUS T genes [10], is absolutely necessary for flowering and mediates the response to both long days and vernalization. Our results suggest that domestication of beets involved the selection of a rare partial loss-of-function BvBTC1 allele that imparts reduced sensitivity to photoperiod that is restored by vernalization, thus conferring bienniality, and illustrate how evolutionary plasticity at a key regulatory point can enable new life cycle strategies.

Published in

Current Biology
2012, volume: 22, number: 12, pages: 1095-1101
Publisher: CELL PRESS

SLU Authors

UKÄ Subject classification

Biochemistry
Molecular Biology

Publication identifier

  • DOI: https://doi.org/10.1016/j.cub.2012.04.007

Permanent link to this page (URI)

https://res.slu.se/id/publ/45404