Fernando, Dinesh
- Department of Forest Products, Swedish University of Agricultural Sciences
Conference paper2016Peer reviewed
Johansson, Ola; Fernando, Dinesh; Ferritsius, Rita; Daniel, Geoffrey; Ferritsius, Olof
Operating costs, pulp quality, and loss of markets continue to dominate the concern of mechanical pulp producers. The search for process improvements, new products, and cost reductions requires significant amount of pulp testing to find out how improvements or new products can be achieved. Unfortunately, the required testing comes at a significant cost due to the time consuming and labor intensive preparation of each sample. For example, a detailed analysis which requires fractionation, hot disintegration, hand sheets, etc. may cost in excess of a thousand dollars. Thus, for an in-depth study where one compares different processes or operating conditions, the cost is significant. At the IMPC conference in Helsinki 2010, 2014 Fernando & Daniel showed how a modern variation of Simon staining can be used to gain information about the fiber wall conditions. This idea has now been expanded further by combining traditional fiber morphology measurements with the information gained from the measurement of color and intensities. In this paper, we will demonstrate a new approach to evaluate mechanical pulps using a special optical analyzer with the ability to process images in color or image intensities. The additional information gained from the color of the images is discussed. For the study, we have been comparing results from three modern commercial installations. The results from these trials are discussed using traditional testing methods in an earlier paper by Ferritsius et al., (2016). We will continue the discussion and show how these pulp samples were analyzed with a new optical device involving minimal sample preparations.
Process improvements, automatic pulp testing, new approach to evaluating pulp quality
Publisher: TAPPI
International Mechanical Pulping Conference
Nano-technology
Paper, Pulp and Fiber Technology
https://res.slu.se/id/publ/78194