Skip to main content
SLU publication database (SLUpub)

Research article2021Peer reviewedOpen access

Combining TanDEM-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume

Persson, Henrik J.; Jonzen, Jonas; Nilsson, Mats


In this study, data from the satellite sensors TanDEM-X and Sentinel-2 were combined with national field inventory data to predict forest above-ground biomass (AGB) and stem volume (VOL) over a large area in Sweden. The data sources were evaluated both separately and in combination. The study area covers approximately 20,000,000 ha and corresponds to about 70% of the Swedish forest area. The study area was divided into tiles of 2.5 x 2.5 km(2), which were processed sequentially. The field plots were inventoried on 7 m and 10 m circular plots by the Swedish National Forest Inventory, and plot AGB and VOL at the year of the satellite data were estimated based on a 10-year period of field data. The AGB and VOL were modelled using the k nearest neighbor (kNN) algorithm, with k = 5 neighbors. The combined use of two data sources with different scene extents enabled the generation of seamless AGB and VOL maps. Moreover, the kNN algorithm provided the VOL divided per tree species, which was used for classification of the dominant tree species at stand-level. The overall accuracy for the dominant tree species classification was 77%. The predicted AGB and VOL rasters were evaluated using 549 field inventoried forest stands distributed over Sweden. The RMSE for the predictions based on both data sources were 31.4 t/ha (29.1%) for AGB, and 59.0 m(3)/ha (30.2%) for VOL. By estimating and removing the variance due to sampling (the stand values were estimated from sample plots), the RMSE was improved to 18.0 t/ ha (16.6%). The evaluated approach of using kNN was suitable for estimating forest variables from a combination of different satellite sensors, provided sufficient field reference data are available. The TanDEM-X data were most important for the AGB and VOL predictions, while Sentinel-2 data were essential to map the tree species.


Forestry; Synthetic aperture radar; Interferometry; Vegetation mapping; kNN

Published in

International Journal of Applied Earth Observation and Geoinformation
2021, Volume: 96, article number: 102275
Publisher: ELSEVIER