Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Structural and functional analysis of human thymidylate kinase isoforms

Frisk, Jun Mei Hu; Pejler, Gunnar; Eriksson, Staffan; Wang, Liya

Abstract

Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.

Keywords

Thymidylate kinase; TMPK; Isoforms; DTYMK; human

Published in

Nucleosides, Nucleotides and Nucleic Acids
2022, Volume: 41, number: 3, pages: 321-332