Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Long-term nitrogen addition raises the annual carbon sink of a boreal forest to a new steady-state

Zhao, Peng; Chi, Jinshu; Nilsson, Mats B.; Lofvenius, Mikaell Ottosson; Hogberg, Peter; Jocher, Georg; Lim, Hyungwoo; Makela, Annikki; Marshall, John; Ratcliffe, Joshua; Tian, Xianglin; Nasholm, Torgny; Lundmark, Tomas; Linder, Sune; Peichl, Matthias

Abstract

The boreal forest is an important global carbon (C) sink. Since low soil nitrogen (N) availability is commonly a key constraint on forest productivity, the prevalent view is that increased N input enhances its C sink-strength. This understanding however relies primarily on observations of increased aboveground tree biomass and soil C stock following N fertilization, whereas empirical data evaluating the effects on the whole ecosystem-scale C balance are lacking. Here we use a unique long-term experiment consisting of paired forest stands with eddy covariance measurements to explore the effect of ecosystem-scale N fertilization on the C balance of a managed boreal pine forest. We find that the annual C uptake (i.e. net ecosystem production, NEP) at the fertilized stand was 16 +/- 2% greater relative to the control stand by the end of the first decade of N addition. Subsequently, the ratio of NEP between the fertilized and control stand remained at a stable level during the following five years with an average NEP to N response of 7 & PLUSMN; 1 g C per g N. Our study reveals that this non-linear response of NEP to long-term N fertilization was the result of a cross-seasonal feedback between the N-induced increases in both growing-season C uptake and subsequent winter C emission. We further find that one decade of N addition altered the sensitivity of ecosystem C fluxes to key environmental drivers resulting in divergent responses to weather patterns. Thus, our study highlights the need to account for ecosystem-scale responses to perturbations to improve our understanding of nitrogen-carbon-climate feedbacks in boreal forests.

Keywords

Boreal forest; Carbon sequestration; Climate change; Eddy covariance; Forest management; Nitrogen fertilization

Published in

Agricultural and Forest Meteorology
2022, Volume: 324, article number: 109112
Publisher: ELSEVIER