Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2023

The use of dual-wavelength airborne laser scanning for estimating tree species composition and species-specific stem volumes in a boreal forest

Axelsson, Christoffer R.; Lindberg, Eva; Persson, Henrik J.; Holmgren, Johan


The estimation of species composition and species-specific stem volumes are critical components of many forest inventories. The use of airborne laser scanning with multiple spectral channels may prove instrumental for the cost-efficient retrieval of these forest variables. In this study, we scanned a boreal forest using two channels: 532 nm (green) and 1064 nm (near infrared). The data was used in a two-step methodology to (1) classify species, and (2) estimate species-specific stem volume at the level of individual tree crowns. The classification of pines, spruces and broadleaves involved linear discriminant analysis (LDA) and resulted in an overall accuracy of 91.1 % at the level of individual trees. For the estimation of stem volume, we employed species-specific k-nearest neighbors models and evaluated the performance at the plot level for 256 field plots located in central Sweden. This resulted in root-mean-square errors (RMSE) of 36 m3/ha (16 %) for total volume, 40 m3/ha (27 %) for pine volume, 32 m3/ha (48 %) for spruce volume, and 13 m3/ha (87 %) for broadleaf volume. We also simulated the use of a monospectral near infrared (NIR) scanner by excluding features based on the green channel. This resulted in lower overall accuracy for the species classification (86.8 %) and an RMSE of 41 m3/ha (18 %) for the estimation of total stem volume. The largest difference when only the NIR channel was used was the difficulty to accurately identify broadleaves and estimate broadleaf stem volume. When excluding the green channel, RMSE for broadleaved volume increased from 13 to 26 m3/ha. The study thus demonstrates the added benefit of the green channel for the estimation of both species composition and species-specific stem volumes. In addition, we investigated how tree height influences the results where shorter trees were found to be more difficult to classify correctly.


Multispectral LiDAR; Species classification; Stem volume; Individual tree crowns

Published in

International Journal of Applied Earth Observation and Geoinformation
2023, Volume: 118, article number: 103251
Publisher: ELSEVIER