Skip to main content
SLU publication database (SLUpub)

Research article2023Peer reviewedOpen access

Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions

Bottero, Irene; Dominik, Christophe; Schweiger, Olivier; Albrecht, Matthias; Attridge, Eleanor; Brown, Mark J. F.; Cini, Elena; Costa, Cecilia; de la Rua, Pilar; de Miranda, Joachim R.; Di Prisco, Gennaro; Dzul Uuh, Daniel; Hodge, Simon; Ivarsson, Kjell; Knauer, Anina C.; Klein, Alexandra-Maria; Maend, Marika; Martinez-Lopez, Vicente; Medrzycki, Piotr; Pereira-Peixoto, Helena;
Show more authors

Abstract

IntroductionHeterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe. MethodsUsing a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches). ResultsWe found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific. DiscussionThus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.

Keywords

habitat heterogeneity; intensity gradient of land-use; pollinators; standardized approach; European biogeographic regions

Published in

Frontiers in Ecology and Evolution
2023, Volume: 11, article number: 1128228
Publisher: FRONTIERS MEDIA SA

      SLU Authors

      Associated SLU-program

      SLU Plant Protection Network

      UKÄ Subject classification

      Ecology

      Publication identifier

      DOI: https://doi.org/10.3389/fevo.2023.1128228

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/122538