Skip to main content
SLU publication database (SLUpub)

Research article2023Peer reviewedOpen access

Capping fiberbank sediments to reduce persistent organic pollutants (POPs) fluxes: A large-scale laboratory column experiment

Dahlberg, Anna-Karin; Wiberg, Karin; Snowball, Ian; Lehoux, Alizee P.

Abstract

Deposits of contaminated wood fiber waste (fiberbanks), originating from sawmills and pulp and paper industries, have been found in the aquatic environment in boreal countries. In-situ isolation capping has been proposed as a remediation solution because it has the potential to prevent dispersal of persistent organic pollutants (POPs) from this type of sediment. However, knowledge about the performance of such caps when placed on very soft (un-consolidated), gaseous organic rich sediment is scarce. We investigated the effectiveness of conventional in-situ capping to limit POPs fluxes to the water column from contaminated fibrous sediments that produce gas. A controlled, large-scale laboratory column (40 cm diameter, 2 m height) experiment was performed over 8 months to study changes in sediment-to-water fluxes of POPs and particle resuspension before and after capping the sediment with crushed stones (& GE;4 mm grain size). Two different cap thicknesses were tested (20 and 45 cm) on two types of fiberbank sediment with different fiber type composition. Results showed that capping fiberbank sediment with a 45 cm gravel cap reduced the sediment-to-water flux by 91-95% for p,p'-DDD, o,p'-DDD, by 39-82% for CB-101, CB-118, CB-138, CB-153, CB-180 and by 12-18% for HCB, whereas for less hydrophobic PCBs, capping was largely ineffective (i.e. CB-28 and CB-52). Although cap application caused particle resus-pension, the long-term effect of the cap was reduced particle resuspension. On the other hand, substantial sediment consolidation released large volumes of contaminated pore water into the overlying water body. Importantly, both sediment types produced large amount of gas, observed as gas voids forming inside the sediment and gas ebullition events, which increased pore water advection and affected the structural integrity of the cap. This may limit the practical applicability of this method on fiberbank sediments.

Keywords

Sediment remediation; In -situ capping; Contaminant transport

Published in

Environmental Pollution
2023, Volume: 333, article number: 122019
Publisher: ELSEVIER SCI LTD

      SLU Authors

    • Sustainable Development Goals

      Ensure availability and sustainable management of water and sanitation for all

      UKÄ Subject classification

      Water Treatment
      Environmental Sciences

      Publication identifier

      DOI: https://doi.org/10.1016/j.envpol.2023.122019

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/123412