Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2020Vetenskapligt granskadÖppen tillgång

Plant functional trait response to environmental drivers across European temperate forest understorey communities

Maes, S. L.; Perring, M. P.; Depauw, L.; Bernhardt-Roemermann, M.; Blondeel, H.; Brumelis, G.; Brunet, J.; Decocq, G.; den Ouden, J.; Govaert, S.; Haerdtle, W.; Hedl, R.; Heinken, T.; Heinrichs, S.; Hertzog, L.; Jaroszewicz, B.; Kirby, K.; Kopecky, M.; Landuyt, D.; Malis, F.;
Visa fler författare

Sammanfattning

Functional traits respond to environmental drivers, hence evaluating trait-environment relationships across spatial environmental gradients can help to understand how multiple drivers influence plant communities. Global-change drivers such as changes in atmospheric nitrogen deposition occur worldwide, but affect community trait distributions at the local scale, where resources (e.g. light availability) and conditions (e.g. soil pH) also influence plant communities. We investigate how multiple environmental drivers affect community trait responses related to resource acquisition (plant height, specific leaf area (SLA), woodiness, and mycorrhizal status) and regeneration (seed mass, lateral spread) of European temperate deciduous forest understoreys. We sampled understorey communities and derived trait responses across spatial gradients of global-change drivers (temperature, precipitation, nitrogen deposition, and past land use), while integrating in-situ plot measurements on resources and conditions (soil type, Olsen phosphorus (P), Ellenberg soil moisture, light, litter mass, and litter quality). Among the global-change drivers, mean annual temperature strongly influenced traits related to resource acquisition. Higher temperatures were associated with taller understoreys producing leaves with lower SLA, and a higher proportional cover of woody and obligate mycorrhizal (OM) species. Communities in plots with higher Ellenberg soil moisture content had smaller seeds and lower proportional cover of woody and OM species. Finally, plots with thicker litter layers hosted taller understoreys with larger seeds and a higher proportional cover of OM species. Our findings suggest potential community shifts in temperate forest understoreys with global warming, and highlight the importance of local resources and conditions as well as global-change drivers for community trait variation.

Nyckelord

Global environmental change; ground vegetation; herbaceous layer; plant-soil relations; resource acquisition; regeneration

Publicerad i

Plant Biology
2020, Volym: 22, nummer: 3, sidor: 410-424
Utgivare: WILEY

    Globala målen

    SDG15 Skydda, återställa och främja ett hållbart nyttjande av landbaserade ekosystem, hållbart bruka skogar, bekämpa ökenspridning, hejda och vrida tillbaka markförstöringen samt hejda förlusten av biologisk mångfald

    UKÄ forskningsämne

    Skogsvetenskap

    Publikationens identifierare

    DOI: https://doi.org/10.1111/plb.13082

    Permanent länk till denna sida (URI)

    https://res.slu.se/id/publ/104061