Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2020Vetenskapligt granskadÖppen tillgång

A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Sulc, 1909) and development of a psyllid barcoding database

Sumner-Kalkun, J. C.; Sjolund, M. J.; Arnsdorf, Y. M.; Carnegie, M.; Highet, F.; Ouvrard, D.; Greenslade, A. F. C.; Bell, J. R.; Sigvald, R.; Kenyon, D. M.

Sammanfattning

The accurate and rapid identification of insect pests is an important step in the prevention and control of outbreaks in areas that are otherwise pest free. The potato-tomato psyllid Bactericera cockerelli (Sulc, 1909) is the main vector of 'Candidatus Liberibacter solanacearum' on potato and tomato crops in North America and New Zealand; and is considered a threat for introduction in Europe and other pest-free regions. This study describes the design and validation of the first species-specific TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of B. cockerelli. The assay detected B. cockerelli genomic DNA from adults, immatures, and eggs, with 100% accuracy. This assay also detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli with 100% accuracy. The assay showed 0% false positives when tested on genomic and cloned DNA from 73 other psyllid species collected from across Europe, New Zealand, Mexico and the USA. This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum conditions was 0.000001ng DNA (similar to 200 copies) of ITS2 DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after establishment in new areas.

Publicerad i

PLoS ONE
2020, Volym: 15, nummer: 3, artikelnummer: e0230741
Utgivare: PUBLIC LIBRARY SCIENCE

    Associerade SLU-program

    SLU Nätverk växtskydd

    UKÄ forskningsämne

    Jordbruksvetenskap

    Publikationens identifierare

    DOI: https://doi.org/10.1371/journal.pone.0230741

    Permanent länk till denna sida (URI)

    https://res.slu.se/id/publ/106520