Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2013Vetenskapligt granskadÖppen tillgång

A Ham1p-Dependent Mechanism and Modulation of the Pyrimidine Biosynthetic Pathway can both Confer Resistance to 5-Fluorouracil in Yeast

Carlsson, Mattias; Gustavsson, Marie; Hu, Guo-Zhen; Murén, Eva; Ronne, Hans

Sammanfattning

5-Fluorouracil (5-FU) is an anticancer drug and pyrimidine analogue. A problem in 5-FU therapy is acquired resistance to the drug. To find out more about the mechanisms of resistance, we screened a plasmid library in yeast for genes that confer 5-FU resistance when overexpressed. We cloned five genes: CPA1, CPA2, HMS1, YAE1 and YJL055W. CPA1 and CPA2 encode a carbamoyl phosphate synthase involved in arginine biosynthesis and HMS1 a helix-loop-helix transcription factor. Our results suggest that CPA1, CPA2, and HMS1 confer 5-FU resistance by stimulating pyrimidine biosynthesis. Thus, they are unable to confer 5-FU resistance in a ura2 mutant, and inhibit the uptake and incorporation into RNA of both uracil and 5-FU. In contrast, YAE1 and YJL055W confer 5-FU resistance in a ura2 mutant, and selectively inhibit incorporation into RNA of 5-FU but not uracil. YAE1 is the strongest resistance gene, but it partially depends on YJL055W for its function. This suggests that YAE1 and YJL055W function together in a novel mechanism for detoxification of 5-FU and other pyrimidine analogs. Yae1p belongs to a small protein family with only two members, which are conserved in all eukaryotes examined. One of the human homologs, TAOS1, is overexpressed in oral carcinomas.

Publicerad i

PLoS ONE
2013, Volym: 8, nummer: 10
Utgivare: PUBLIC LIBRARY SCIENCE