Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2017Vetenskapligt granskad

Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections

Nijp, Jelmer J.; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats; Berendse, Frank; Van Der Zee, Sjoerd

Sammanfattning

The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown.The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden.Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both proces'ses. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes.Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on ecosystem processes related to topsoil water content, such as greenhouse gas emissions. (C) 2016 Elsevier B.V. All rights reserved.

Publicerad i

Science of the Total Environment
2017, Volym: 580, sidor: 1389-1400

      SLU författare

    • Globala målen

      SDG15 Skydda, återställa och främja ett hållbart nyttjande av landbaserade ekosystem, hållbart bruka skogar, bekämpa ökenspridning, hejda och vrida tillbaka markförstöringen samt hejda förlusten av biologisk mångfald
      SDG13 Vidta omedelbara åtgärder för att bekämpa klimatförändringarna och dess konsekvenser

      UKÄ forskningsämne

      Skogsvetenskap

      Publikationens identifierare

      DOI: https://doi.org/10.1016/j.scitotenv.2016.12.104

      Permanent länk till denna sida (URI)

      https://res.slu.se/id/publ/80029