Skip to main content
SLU:s publikationsdatabas (SLUpub)

Sammanfattning

Biobased carbon materials (BBC) obtained from Norway spruce (Picea abies Karst.) bark was produced by single-step chemical activation with ZnCl2 or KOH, and pyrolysis at 800 °C for one hour. The chemical activation reagent had a significant impact on the properties of the BBCs. KOH-biobased carbon material (KOH-BBC) had a higher specific surface area (SBET), equal to 1067 m2 g−1, larger pore volume (0.558 cm3 g−1), more mesopores, and a more hydrophilic surface than ZnCl2-BBC. However, the carbon yield for KOH-BBC was 63% lower than for ZnCl2-BBC. Batch adsorption experiments were performed to evaluate the ability of the two BBCs to remove two dyes, reactive orange 16 (RO-16) and reactive blue 4 (RB-4), and treat synthetic effluents. The general order model was most suitable for modeling the adsorption kinetics of both dyes and BBCs. The equilibrium parameters at 22 °C were calculated using the Liu model. Upon adsorption of RO-16, Qmax was 90.1 mg g−1 for ZnCl2-BBC and 354.8 mg g−1 for KOH-BBC. With RB-4, Qmax was 332.9 mg g−1 for ZnCl2-BBC and 582.5 mg g−1 for KOH-BBC. Based on characterization and experimental data, it was suggested that electrostatic interactions and hydrogen bonds between BBCs and RO-16 and RB-4 dyes played the most crucial role in the adsorption process. The biobased carbon materials showed high efficiency for removing RO-16 and RB-4, comparable to the best examples from the literature. Additionally, both the KOH- and ZnCl2-BBC showed a high ability to purify two synthetic effluents, but the KOH-BBC was superior.

Nyckelord

biobased carbon materials; meso- and microporous carbons; dye adsorption; chemical adsorption; electrostatic interactions

Publicerad i

Coatings
2021, volym: 11, nummer: 7, artikelnummer: 772

SLU författare

UKÄ forskningsämne

Materialkemi
Annan naturresursteknik
Pappers-, massa- och fiberteknik

Publikationens identifierare

  • DOI: https://doi.org/10.3390/coatings11070772

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/112958