Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2019Vetenskapligt granskadÖppen tillgång

Classical and Bayesian inference for Burr type-III distribution based on progressive type-II hybrid censored data

Gamchi, Fatemeh Valizadeh; Alma, Ozlem Gurunlu; Belaghi, Reza Arabi

Sammanfattning

The aim of this paper is to discuss the estimation and prediction problems for the Burr type-III distribution under progressive type-II hybrid censored data. We obtained maximum likelihood estimators (MLEs) of unknown parameters using stochastic expectation maximization (SEM) algorithms, and the asymptotic variance-covariance matrix of the MLEs under SEM framework is obtained by Fisher's information matrix. We provide various Bayes estimators for unknown parameters using Lindley's approximation method and importance sampling technique from square error, entropy, and linex loss functions. Finally, we analyze a real data set and generate a simulation study to compare the performance of various proposed estimators and predictors under different situations.

Nyckelord

Bayesian inference; Burr type-III model; SEM algorithm; Progressive hybrid censored data; Loss functions; Highest posterior density (HPD)

Publicerad i

Mathematical Sciences
2019, volym: 13, nummer: 2, sidor: 79-95
Utgivare: SPRINGER HEIDELBERG

SLU författare

UKÄ forskningsämne

Sannolikhetsteori och statistik

Publikationens identifierare

  • DOI: https://doi.org/10.1007/s40096-019-0281-9

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/126918