Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2018Vetenskapligt granskadÖppen tillgång

Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring

Asl, Mehri Noori; Belaghi, Reza Arabi; Bevrani, Hossien

Sammanfattning

In this article, we consider the problem of estimation and prediction on unknown parameters of a Lomax distribution when the lifetime data are observed in the presence of progressively type-I hybrid censoring scheme. In the classical scenario, the Expectation Maximization (EM) algorithm is utilized to derive the maximum likelihood estimates (MLEs) for the unknown parameters and associated confidence intervals. Under the Bayesian framework, the point estimates of unknown parameters with respect to different symmetric, asymmetric and balanced loss functions are obtained using Tierney-Kadane's approximation and Markov Chain Monte Carlo (MCMC) technique. Also, the highest posterior density (HPD) credible intervals for the parameters are reckoned using importance sampling procedure. Simulation experiments are performed to compare the different proposed methods. Further, the predictive estimates of censored observations and the corresponding prediction intervals are also provided. One real-life data example is presented to illustrate the derived results. (C) 2018 Elsevier B.V. All rights reserved.

Nyckelord

Bayesian estimation; EM algorithm; Balanced loss; Tierney-Kadane's approximation; Prediction; Progressively type-I hybrid censoring

Publicerad i

Journal of Computational and Applied Mathematics
2018, volym: 343, sidor: 397-412
Utgivare: ELSEVIER SCIENCE BV

SLU författare

UKÄ forskningsämne

Sannolikhetsteori och statistik

Publikationens identifierare

  • DOI: https://doi.org/10.1016/j.cam.2018.04.028

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/126919