Skip to main content
SLU:s publikationsdatabas (SLUpub)

Sammanfattning

This paper deals with the problem of estimating unknown parameters of the Burr XII distribution under classical and Bayesian approaches when samples are observed under progressive type-I interval censoring. Under classical approach we employ the stochastic expectation maximization algorithm to obtain maximum likelihood estimators for the unknown parameters and also compute associated interval estimates. Further under Bayesian approach we obtain Bayes estimators with respect to different symmetric, asymmetric and balanced loss functions. In this regard we use Tierney-Kadane and Metropolis-Hastings (MH) algorithm. For illustration purpose we analyse a real data set and conduct a Monte Carlo simulation study to observe the performance of the proposed estimators. Finally we present a discussion on inspection times and optimal censoring.

Nyckelord

Balanced loss; Bayesian estimation; HPD interval; maximum likelihood estimation; inspection times; SEM algorithm; optimal censoring

Publicerad i

Journal of Statistical Computation and Simulation
2017, volym: 87, nummer: 16, sidor: 3132-3151
Utgivare: TAYLOR & FRANCIS LTD

SLU författare

UKÄ forskningsämne

Sannolikhetsteori och statistik

Publikationens identifierare

  • DOI: https://doi.org/10.1080/00949655.2017.1359600

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/126925