Skip to main content
SLU:s publikationsdatabas (SLUpub)

Sammanfattning

Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from -2.2 to -3.9 mu mol O-2 m(-2)s(-1) and doubled light- and CO2-saturated photosynthesis at 20 degrees C from 18.1 to 37.0 mu mol O-2 m(-2) s(-1). We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves, Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves, These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening, Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate, This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phosphoglycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity, Thus, it does not appear that oxidative phosphorylation supports the increase in photosynthetic O-2 evolution following cold-hardening by increasing the availability of cytosolic ATP, The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by nan-cyclic photosynthetic electron transport.

Nyckelord

FROST-HARDENING; LOW TEMPERATURE; OLIGOMYCIN; PHOTOINHIBITION; RESPIRATION; SPS

Publicerad i

Plant, Cell and Environment
1995, volym: 18, nummer: 1, sidor: 69-76
Utgivare: BLACKWELL SCIENCE LTD

SLU författare

UKÄ forskningsämne

Botanik

Publikationens identifierare

  • DOI: https://doi.org/10.1111/j.1365-3040.1995.tb00545.x

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/76384