Skip to main content
SLU publication database (SLUpub)

Research article2019Peer reviewedOpen access

Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA Deletions

Forsstrom, Saara; Jackson, Christopher B.; Carroll, Christopher J.; Kuronen, Mervi; Pirinen, Eija; Pradhan, Swagat; Marmyleva, Anastasiia; Auranen, Mari; Kleine, Iida-Marja; Khan, Nahid A.; Roivainen, Anne; Marjamaki, Paivi; Liljenback, Heidi; Wang, Liya; Battersby, Brendan J.; Richter, Uwe; Velagapudi, Vidya; Nikkanen, Joni; Euro, Liliya; Suomalainen, Anu

Abstract

Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondria) one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondria! unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.

Published in

Cell Metabolism
2019, Volume: 30, number: 6, pages: 1040-1054

    UKÄ Subject classification

    Cell Biology

    Publication identifier

    DOI: https://doi.org/10.1016/j.cmet.2019.08.019

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/102285