Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2021Vetenskapligt granskadÖppen tillgång

Low Dose Coagulant and Local Soil Ballast Effectively Remove Cyanobacteria (Microcystis) from Tropical Lake Water without Cell Damage

Thongdam, Somjate; Kuster, Anthony C.; Huser, Brian J.; Kuster, Anootnara T.

Sammanfattning

The combination of a low dose of coagulant with a ballast, also known as "flock and sink," has been proposed as a lake restoration and cyanobacteria bloom management strategy. The effectiveness of this technique using aluminum sulfate (alum) as a coagulant and a local soil (LS) from Thailand as a ballast in eutrophic water dominated by positively buoyant Microcystis colonies collected from a tropical lake was investigated by measuring changes in chlorophyll-a (chl-a), pH, and zeta potential. Cell integrity was also evaluated using scanning electron microscopy. Results showed that alum alone could reduce chl-a (up to 60% to 83%) at doses (higher than 3 to 6 mg Al/L) dependent on the initial pH (7.6 to 8.2) and initial chl-a concentration (138 to 615 mu g/L) of the lake water but resulted in morphological changes to cellular structure and generally required a dose that reduced pH to <7. LS ballast alone was able to reduce chl-a concentrations (up to 26% at highest dose of 400 mg/L) and caused no significant changes to pH or zeta potential. Combining a low dose of alum (2 mg Al/L) with some amount of LS ballast (50 to 400 mg/L) created an interaction effect that resulted in 81 to 88% reduction in chl-a without changes to zeta potential or morphological changes to cellular structure. Flock and sink may serve a niche role in lake restoration when positively buoyant cyanobacteria are present in the water column during time of treatment. This research showed that an 800% increase in ballast dose resulted in about an 8% reduction in chl-a when combined with 2 mg Al/L of alum. Therefore, it is recommended that ballast dose should be determined by considering its phosphorus sorption capacity and the potentially releasable phosphorus in the lake sediment in order to realize long-term reductions in sediment nutrient release.

Nyckelord

alum; eutrophication; flock and sink; lake restoration; scanning electron microscope

Publicerad i

Water
2021, Volym: 13, nummer: 2, artikelnummer: 111
Utgivare: MDPI

    Globala målen

    Säkerställa tillgången till och en hållbar förvaltning av vatten och sanitet för alla

    UKÄ forskningsämne

    Miljövetenskap
    Oceanografi, hydrologi, vattenresurser

    Publikationens identifierare

    DOI: https://doi.org/10.3390/w13020111

    Permanent länk till denna sida (URI)

    https://res.slu.se/id/publ/110698