Skip to main content
SLU:s publikationsdatabas (SLUpub)

Forskningsartikel2021Vetenskapligt granskad

Drinking water treatment residual as a ballast to sink Microcystis cyanobacteria and inactivate phosphorus in tropical lake water

Kuster, Anthony C.; Huser, Brian J.; Thongdamrongtham, Somjate; Padungthon, Surapol; Junggoth, Rittirong; Kuster, Anootnara T.


The combination of a low dose of coagulant with a ballast that can inactive phosphorus (P) in lake sediment-a technique known as "flock and lock"-is one method for restoration of eutrophic lakes. The effectiveness of a drinking water treatment residual (DWTR) as a ballast in flock and lock was assessed using assays of eutrophic lake water from Thailand dominated by Microcystis aeruginosa cyanobacteria colonies by measuring changes in chlorophyll-a, pH, and zeta potential. P sorption isotherms were developed from long-term batch equilibrium experiments; desorption of nutrients and metals was assessed via leaching experiments; and morphological changes to cellular structure were assessed using scanning electron microscopy. Results showed that combining DWTR with a low dose of aluminum sulfate (0.6-4.0 mg Al/L) effectively sank 74-96% of Microcystis, with DWTR dose (50-400 mg/L), initial chlorophyll-a concentration (92-976 mu g/L), pH (7.4-9.3), and alkalinity (99-108 ppm CaCO3) identified as factors significantly associated with sinking efficacy. P sorption capacity of the DWTR (7.12 mg/g) was significantly higher than a local soil (0.33 mg/g), enabling the DWTR to inactivate P in lake sediment. Desorption of Al, Fe, Ca and N from the DWTR was estimated to contribute to a marginal increase in concentrations of those compounds in the water column of a small shallow lake (1.2, 0.66, 53.4, and 0.07 mu g/L, respectively) following a simulated application. Therefore, pre-treated DWTRs may be a viable alternative ballast in the flock and lock approach to lake restoration, supplementing or replacing modified local soils or lanthanum modified clays.


Alum; Drinking water sludge; Eutrophication; Flocculation; Geoengineering; Internal phosphorus loading; Lake restoration

Publicerad i

Water Research
2021, Volym: 207, artikelnummer: 117792

    Globala målen

    SDG6 Rent vatten och sanitet för alla

    UKÄ forskningsämne


    Publikationens identifierare


    Permanent länk till denna sida (URI)